Transcript levels of the Saccharomyces cerevisiae DNA repair gene RAD18 increase in UV irradiated cells and during meiosis but not during the mitotic cell cycle.

نویسندگان

  • J S Jones
  • L Prakash
چکیده

We have examined the transcript levels of the Saccharomyces cerevisiae DNA repair gene RAD18 in UV irradiated cells, in the mitotic cell cycle, and during meiosis. Levels of RAD18 mRNA increased upon UV irradiation, but remained constant during the mitotic cell cycle. During meiosis, RAD18 mRNA levels rose about 4 fold at a stage coincident with the period when high levels of genetic recombination occur. RAD18 resembles the other DNA repair genes, RAD2, RAD6, RAD7, RAD23, and RAD54, all of which also exhibit increased transcription in response to DNA damage and during meiosis. Comparisons of sequences in 5' flanking regions of RAD genes suggest that different upstream sequences are involved in regulating the expression of DNA repair genes belonging to different epistasis groups.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Expression of the Saccharomyces cerevisiae DNA repair gene RAD6 that encodes a ubiquitin conjugating enzyme, increases in response to DNA damage and in meiosis but remains constant during the mitotic cell cycle.

The RAD6 gene of Saccharomyces cerevisiae encodes a ubiquitin-conjugating (E2) enzyme and is required for the repair of damaged DNA, mutagenesis, and sporulation. Here, we report our studies on the regulation of RAD6 gene expression after UV damage, during the mitotic cell cycle, in meiosis, and following heat shock and starvation. RAD6 mRNA levels became elevated in cells exposed to UV light, ...

متن کامل

The yeast Saccharomyces cerevisiae DNA polymerase IV: possible involvement in double strand break DNA repair.

We identified and purified a new DNA polymerase (DNA polymerase IV), which is similar to mammalian DNA polymerase beta, from Saccharomyces cerevisiae and suggested that it is encoded by YCR14C (POLX) on chromosome III. Here, we provided a direct evidence that the purified DNA polymerase IV is indeed encoded by POLX. Strains harboring a pol4 deletion mutation exhibit neither mitotic growth defec...

متن کامل

Initiation of Ageing Process by Meiotic and Mitotic Recombination within the Ribosomal DNA Genes in Saccharomyces cerevisiae

In the budding yeast of Saccharomyces cerevisiae the tandem repeated of rDNA genes are located onchromosome XII, which is in the nucleolus. There are different types of proteins in the nucleoluskeleton,silencing proteins have got important role in nucleolus.It is shown that meiotic recombination between nonsister chromatids in the rDNA genes are stronglysuppressed, and s...

متن کامل

Regulation of the Saccharomyces cerevisiae DNA repair gene RAD16.

The RAD16 gene product has been shown to be essential for the repair of the silenced mating type loci [Bang et al. (1992) Nucleic Acids Res. 20, 3925-3931]. More recently we demonstrated that the RAD16 and RAD7 proteins are also required for repair of non-transcribed strands of active genes in Saccharomyces cerevisiae [Waters et al. (1993) Mol. Gen. Genet. 239, 28-32]. We have studied the regul...

متن کامل

Cohesin plays a dual role in gene regulation and sister-chromatid cohesion during meiosis in Saccharomyces cerevisiae.

Sister-chromatid cohesion mediated by cohesin ensures proper chromosome segregation during cell division. Cohesin is also required for postreplicative DNA double-strand break repair and gene expression. The molecular mechanisms of these diverse cohesin functions remain to be elucidated. Here we report that the cohesin subunits Scc3 and Smc1 are both required for the production of the meiosis-sp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nucleic acids research

دوره 19 4  شماره 

صفحات  -

تاریخ انتشار 1991